Fully 3D-printed quantum dot LEDs

To date, the 3D printing of electronic components has been limited to the printing of batteries, strain sensors, interdigitated-electrode capacitors and passive metallic structures such as interconnects and antennas on surfaces or within biological organs…

The ability to directly and seamlessly incorporate materials with a range of diverse functionalities with 3D printing is particularly attractive as it could allow the simultaneous, comprehensive, and direct printing of structural, biological, and electronic materials that capture the complete spectra of material properties.

The free-form generation of active electronics in unique architectures which transcend the planarity inherent to conventional microfabrication techniques has been an area of increasing scientific interest. Yet, attaining seamless interweaving of electronics is challenging due to the inherent material incompatibilities and geometrical constraints of traditional micro-fabrication processing techniques.

At the fundamental level, 3D printing should be entirely capable of creating spatially heterogeneous multi-material structures by dispensing a wide range of material classes with disparate viscosities and functionalities, including semiconducting colloidal nanomaterials, elastomeric matrices, organic polymers, and liquid and solid metals.

“The big push in 3D printing these days is to try to print two or more polymers at once,” Michael McAlpine, an assistant professor of mechanical and aerospace engineering at Princeton University, tells Nanowerk. “In our latest research, we go way beyond that. We show that we can print interwoven structures of quantum dots, polymers, metal nanoparticles, etc, to create the first fully 3D printed LEDs, in which every component is 3D printed.”

This demonstration represents a proof of concept in combining active nanoelectronic components with the versatility of 3D printing, which enables the three-dimensional free-form fabrication of active electronics. … (Read more)

Source: NanoWerk.com